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ABSTRACT 

In Rudo l ph ' s  paper  on min imal  self joinings [7] he proves t ha t  a rank 

one mix ing  t r ans fo rma t ion  cons t ruc ted  by Orns te in  [5] can be used as 

the  bui ld ing block for m a n y  ergodic theoretical  counterexamples .  In this  

paper  we show t h a t  Orns te in ' s  t r ans fo rmat ion  can be altered to create  

a general  m e t h o d  for producing  zero entropy, loosely Bernoulli  counter-  

examples .  Th i s  paper  answers a quest ion posed by Orns te in ,  Rudolph ,  

and  Weiss [6]. 

1. I n t r o d u c t i o n  

The problem of finding a map T which is not Bernoulli, but the maps of the form 

T × T × . . .  × T are loosely Bernoulli, has been studied by Katok, Swanson, and 

Gerber. Katok created a simple weak mixing, but not mixing, map T such that 

T x T is loosely Bernoulli. Swanson extended this to a map T ~ such that all maps 

of the form T ~ x T '  x . . .  x T ~ are loosely Bernoulli [8]. Gerber altered Katok's 

map to find a mixing transformation with all of the countable direct products of 

it with itself are loosely Bernoulli [2]. In this paper we exhibit a transformation, 

T, which is rank one and mixing. This transformation is an adaptation of one 

in [5]. Thus by King's theorem it has minimal self joinings and thus can serve 

as the basis for Rudolph's counterexample machine [4]. We also show it has 

T × . . .  x T loosely Bernoulli, and all of the counterexamples T generates are 

loosely Bernoulli. 

Ornstein's map is built by cutting and stacking n -  1 blocks to form an n 

block. Two adjacent n blocks are separated by a "psuedorandom" number of 

spacer symbols. Most of our n block, the "mixing" portion, will be built this 
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way. In section 3 we prove tha t  if the mixing port ion is most, rather  than  all, of 

the n block, T still has minimal self joinings. 

On a small por t ion of the beginning of the n block we will arrange the n - 1 

blocks in a different manner.  We will have many n -  1 blocks with no spacer 

symbols between adjacent blocks, followed by many more n - 1 blocks with 1 

spacer symbol  between adjacent n - 1 blocks. We call these the "cyclic" regions 

of the n block. A point  x in the first cyclic region has a name which for a long 

t ime is cyclic with period h(n - 1), the length of an n - 1 block. Similarly a point  

y in the second cyclic region has a name under our part i t ion which for a long 

t ime is cyclic with period h(n - 1) + 1. Thus the pair (x, y) has a name which 

for a long t ime is periodic with period h(n - 1)(h(n - 1) + 1). In section 4 we 

will use a nesting procedure to show these long periodic stretches in the (x, y) 

name  make T × T loosely Bernoulli. As n increases we will increase the number  

of cyclic regions at  the beginning of an n block. This will allow us to prove 

tha t  T × . . .  × T is loosely Bernoulli. In section 5 we show tha t  a large class of 

t ransformat ions  built from T are loosely Bernoulli. 

2. C o n s t r u c t i o n  

The  construct ion is by a cut t ing and stacking prcedure. Let the space f~ -- (0, s) z. 

Our  t ransformat ion  T is the shift, (T(w))i = wi + 1. Let Q be the part i t ion of f~ 

into two sets based on the value ofwo. The zero block, B(0),  is the single symbol 

0. The  n block, B(n) ,  will be a string of h(n) symbols of Q. To construct  B(n)  

inductively from B(n  - 1) we need to choose N(n),  the number  of n - 1 blocks 

in the n block. We also need c~, the number  of cyclic regions at  t h e  beginning 

of an n block, and xn, where x,~N(n) E Z is the number  of n - 1 blocks in 

each cyclic region. We must  have cnx,~ _< 1. To specify the number  of spacer 

s symbols between the n - 1 blocks we need two sequences of integers. The  

first, Pl,,~,P2,n,... ,Pc,,n, tells how many spacer symbols to put  after an n -  1 

block in each of the cyclic regions. The second is the psuedorandom sequence, 

al,~,a2,n, . . .  ,a(1-c~x,~)N(n),n- We also need S(n) so tha t  all of the ai,n and P~,n 

are between 1 and S(n).  If  these are all fixed then we construct  the n block in 

the following way. 

Let the j t h  cyclic region, Bj,n, be defined as follows: 

Pj,n Pj ,n Pj ,n 

Bj,,~ = (n - 1 block) sssss(n - 1 block) s s s s s . . .  (n - 1 block) sssss .  

Each cyclic region has xnN(n)  n - 1 blocks. Now we put  these together  to form 

Bn : B l , nB2 ,n ' "  Bc,~,n, 
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the cyclic por t ion of the n block. To form the mixing portion, B*, of the n block 

we define 
a~.~ s(,~)-a~,~ 

B;, n ~ ( n  1 block) ~ : - -  8 8 8 3 8 3 S 8  . 

The mixing por t ion of an n block is created by put t ing  those together,  

Bn = Bl,nB2,n "'" B(1 . . . . . . .  N(n)),n" 

Then  the n block is the cyclic port ion followed by the mixing port ion,  

B(n) : BnB~ 

= Bt , ,~""  Bc~,~B{,~B~,~'"B(I_c~N(n)),~. 

In order for names to have long enough cyclic regions to do the nesting proce- 

dures we choose x~ C Q so tha t  

x ~ - - + 0  and ~ ( x T J  p = e o  for a l lp .  
n = l  

For technical reasons we choose x n : 0 for all n = 0, 2 mod  3. Next we select 

en E Z increasing to infinity but  doing so slowly enough that  CnXn --40. 

We will use a sequence en such tha t  ~-:~N ~n < £N-1.  Finally we choose 

S ( n  + 1), N ( n ) ,  a<j, and Pi,n inductively. We choose S (n  + 1), so large tha t  

- 1) 
+ < 

Now we pick N(n ) .  Our first restriction on N(n )  is in order to make sure 

the measure space, ~,  is finite. We require tha t  the number  of spacers used in 

building the n block are a small fraction of the length of an n block. To do this, 

we need 
S(n + 1) S(n + 1) 

< < cn. h(n) N ( n ) h ( n  - 1) 

For any choice of  the parameters  listed above we will get a t ransformation.  

We want  to make our choices so that  the resulting t ransformat ion has a special 

mixing proper ty  for each n. First we need a few definitions. 

We say tha t  a point  w is in the n block if for some i, i < 0 < i + h(n) - 1, the 

symbols  Q ( T i ( w ) ) , . . . ,  Q(Ti+h(n)-l(w)) form the n block. We call t ha t  interval 

of integers (i, i + h(n) - 1) the n block around 0 for w. We now generalize this to  

the case where we have a t ransformat ion U = T ll ×- - -  × T lk act ing on ft k. We say 
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that  the k fold n overlap around 0 for a) l , . . .  , b)k, is the largest interval of integers 

( - - j , j ' )  such that  for all i, and t C (_ j ,  jt), Tth(wi) is in the n block around 0. 

Similarly the mixing k fold n overlap around 0, P0,~(Wl,. . . ,  wk), is defined to be 

the largest interval of integers ( - j , j ' )  such that  for all i and t C ( - j ,  j ' )  Ttli (wi) 
is in the mixing portion of the n block. 

We want to choose N(n)  large enough so that  there exists a psuedorandom 

sequence, ai,n, such that  the n block has the following mixing property. For 

any k fold mixing overlap, ( i , j ) ,  of n blocks, with 0 <_ k, Ilil <_ n, and for 

1 < zl, z2 , . . . ,  zk <_ h(n - 2), one of three things must happen. Either 

(1) the mixing overlap is extremely short (< enh(n)), 

(2) there are points wt and wt,, such that  It = It, and the n blocks for wt and 

wt, differ by less than (h(n - 1) + S(n)) / l t ,  or 

(3) I ~ ( ~  of t]Tht(Wl) is in the Zlth position of an n - 2 block, 

Tl2t(w2) is in the z2th position of an n - 2 block,... 

TZkt(wk) is in the zkth position of an n - 2 block) 

- 1 / h ( n  - 2)~1 < E~ 

LEMMA 1: (Rudolph) There exists an N such that, t:or all N (n) > N,  there exists 

a sequence ai,n, 1 < i < N(n)(1 - x~cn), which satisfies the above condition on 

mixing n overlaps. 

Proof." This is an application of the exponential rate of convergence for the weak 

law of large numbers and is proved by Rudolph [7]. | 

We also need to have x,~N(n) E Z, and if x~ > 0, 

(2h(n - 1)) ~ 

x ~ N ( n ) h ( n -  1) 
{in. 

Choose N(n)  so that  all of the above conditions are satisfied. Then select a 

sequence ai,n, 1 < i < N(n)(1 - xnc~), that  satisfies our condition on mixing 

n overlaps. Now choose P l ,n+ l , . . .  ,Pc~+l,n+l so that  h(n) + P l , n + l , . . . ,  h(n) + 
Pc,+~,~+l are relatively prime and 

Pj,n+l 
- -  < ~ n .  h(n) 

This can be done by a lemma in [2]. Proceeding in this manner we select 

N(n) ,  S(n) ,  ai,n, and Pi,~. 
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3. T has min imal  se l f  jo inings  

In this section we show that  our transformation T, even with the addition of 

cyclic portions in the n blocks, still has minimal self joinings. Therefore it can 

serve as the basis for Rudolph's counterexample machine. 

Each point (w,w') E ft 2 under T × T partitions Z into mixing n overlaps and 

gaps between the mixing n overlaps. P0,~ is the mixing n overlap containing 0, 

if it exists. 

Definition 1: We say a mixing n overlap is g o o d  if it satisfies condition (3) 

above. 

Definition 2: We say that  an n block, (i,i + h(n) - 1), for Wl and an n block, 

( j , j  + h(n) - 1), for w2 l ine u p  if [ j -  i I < h ( n -  1) + S(n).  

This next lemma is basically a restatement of condition (3) of our possibilities 

for mixing overlaps in the terms we will apply it. 

LEMMA 2: For any (w,w') E ~2, good -fii,n(w,w'), and A × B ,A ,  and B 

are cylinder sets defining what happens from time 0 to time h ( n -  3) 

(A, B E V°_h(n_3) TiQ),  then 

1 
[Pi,~(-w,w')] ( #  of j E Pi,=](T × T)J((w,w'))  E A x B) - It(A)It(B) < 10Ca-3. 

Proof: Define R(n) to be all points that  are in an n block, but not in the last 

h(n - 1) levels of the n block. Thus 

It(R(n))  > 1 h ( n -  1) oo 
h(n) E ~ > 1 -  ~ - 1 .  

i = n + l  

IP~,n(W,W')] 

differs from 

( #  of j E Ti,~I(T x T)J((w,w'))  E (A x B) n ( R ( n -  2) x R ( n -  2))) 

It x It((A x B) N ( R ( n -  2) x R ( n -  2)) 

# x It(R(n) x R(n)))  

by less than 2 ~ _ 3 / ( 1  - 2~n-3) by Lemma 1. The latter differs from #(A)# (B)  

by less than 2 C n - 3 / ( 1  -- 2~n - 3 ) .  As  

( #  o f j  ¢ Pi ,nl(T x T ) J ( w , J )  E A x B) = 
IPi,n(W,w')l 
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( #  o f j  E Pi,n[(T x T)J(w,w ') E 

(A x B) a (R(n - 2) x R(n  - 2))) 

( #  o f j  E P i , . [ ( T  × T)J(w,w ') E 

(A x B) A ( R ( n -  2) x R ( n - 2 ) )  c)  

and the last term is less than 2(n_3, we get the desired result. I 

THEOREM 1: T IS mixing. 

Proof'. Let A, B E VJj T~(Q). Fix an e > 0. To compute p(A M T'~(B)) take a 

point w generic for all cylinder sets. Choose n large enough so that h(n - 3) > 

100j, all but e/100 of the points in ~ are in the n block, h(n - 1)/h(n) < e/100, 

and en-a < e/10. Choose m = 2h(n - 1). 

Now (w,T-m(w))  E A x B implies w E A N T'*(B).  None of the n blocks 

of w and T-re(w) line up. Thus Lemma 2 applies to every mixing n overlap of 

(W, T-mw) and we have 

1 
# ( A ) # ( T m B )  - [Pi,~(w, T-mw)[ (# of j E P~,.I 

£ 

(T x T )J (w ,T-mw)  E A x B)  < 1-0" 

Because w is generic we have 

n--1  

lim 1 E X A x B (  T × T ) j (w ,T_mw ) =. # (AMT m (B) ) "  
n - +  o o  

0 

As n overlaps make up all but e/lO of the times 

[#(A cl T'~(B)) - #(A)#(B)[ < e. I 

Since T is rank one and mixing it is three mixing [3]. In [4] it is claimed that  

[3] can be extended to show that T is mixing of all orders. This could also be 

proven directly by an argument similar to the one in [7]. 

THEOREM: T has minimal self joinings. 

Proof." T is mixing and by construction is rank one. Thus by King's structure 

theorem for rank one maps [4], T has minimal self joinings. | 
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4. T x -.- × T - . -  is loosely  Bernou l l i  

In this section we will show that our addition of the "cyclic" part of the n block 

is enough to make T × -.. × T loosely Bernoulli. Without this cyclic part the 

direct product of Ornstein's transformation with itself is not loosely Bernoulli [6]. 

The proof builds on the fact that if x is a sequence with period n, y is a sequence 

with period m, and gcd(n,m) = 1, then (x,y) has period urn. If x,y E t2 and x 

is in the first cyclic section of an n + 1 block, then the x name looks cyclic with 

period h(n) in some region around 0. Likewise if y is in the second cyclic section 

of an n + 1 block then the y name looks cyclic with period h(n) + a2,,~. Thus if 

the cyclic parts are long enough (x, y) looks cyclic with period h(n)(h(n)+ a2,n). 
Now if x ~ and y' are in similar positions, then in some region (x', y') is also cyclic 

with the same period. If the overlaps of the cyclic parts are long enough this 

implies we have a good f matching of the (x, y) name with the (x ~, y~) name 

around 0. We will combine matching of this sort from different blocks to obtain 

our f matching. 

The strategy for matching names is a nesting procedure of the matching out- 

lined above. Assume that we already have a large set with a good matching on 

3n - 3 overlaps. In the 3n - 2 block we introduce a cyclic part. This gives us 

a small set such that any two points in that set are f very close for a very long 

time. By Lemma 1 most long enough 3n overlaps have a high density of times 

where both points are in this set. First we find the times where both points are 

in the good set and apply our good long matching. Then we go through the 

unmatched regions and apply the shorter matching which we had on the 3n - 3 

overlaps. We then check that this scheme gives us sets approaching measure 1 

on which the f distance between any two points in the set goes to zero. 

Define M3,~+l,k to be all ( x l , . . . ,  xk) such that 

xt E first half of the B1,3n in a 3n + 1 block, 

x2 E first half of the B2,3,~ in a 3n + 1 block,... 

xk E first half of the Bk,3n in a 3n + 1 block. 

If (x l , . . . ,  xk), (Yl, . - . ,  Yk) C M3,~+l,k, then 

?F(3n+I ) ( (Xl , ' ' ' ,Xk) , (Yl , ' ' ' ,Yk) )  <~ •3n+l 

where F(3n + 1) = lx3n+lN(3n + 1)h(3n). This is because there exists some i 

and i', 0 < i,i' < H~=l (h(3n) + Pj,3=+I), so 

Tix l ,T ix2 , . . .  ,Tixk and Ti'yl ,Ti 'y2,. . .  ,Ti'yk 
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are all in the first posit ion of the 3n block. The equation is t rue because the next 

½x3,~+a N ( 3 n +  1)h(3n) -max( i~  i ') symbols must  match exactly and discrepancies 

occur  with density less than  

(2h(3n))C3-+ 1 

X3n+lN(3n + 1)h(3n) 
< t :3n+l .  

Define B3n,k to  be all points x = ( X l , . . .  Xk) in ~k such tha t  no two 3n blocks 

for xi and x j  line up and (0, c3~h(3n)) is in a 3n block for all i. Thus  

#(B3n,k ) > (1 - 2k2czn) = 1 - 53n. 

Let s 0 = l a n d  

S3n \ T ]  £3n--2 + 1 --  - -  83n_ 3 + 4(~3n_ 3. 

Thus  s~ --+ 0 because ~ fin < c~, ~-~(xn) 2k = ~ and e~ -+ 0. 

LEMMA 3: For any p, q C Ban,k, -f~z~n(3n)(P,q) <-- s3~. 

Proof: We prove the l emma by induction. It  is obvious for n = 0. Given p, q E 

B3n,k we find an i, 0 < i < k2h(3n - 1), such tha t  none of the 3n blocks around 0 

for an pj lines up with the 3n block for some T~qk. Thus for at least (x3n_2/2) 2k 

of the j, 0 _< j < eanh(3n), we have UJ(p) C M3n-2,k and ui+j(q)  C M3n-2,k.  

Call this set of j,  J. By the comment  above we have an e3n_ 2 good matching  of 

the p name  from j to j + F ( 3 n  - 2) with the q name on the interval from j + i 

to  j + i + F ( 3 n -  2). 

Now we can use L e m m a  1 to conclude for at  least 1 - 363~-3 of  the t ~t J we 

have Ut(p), Ut+i(q) C B3~-3,k. For those good t the inductive hypothesis  gives 

us a matching  of the p name from t to t + e3n-3h(3n - 3) with the q name from 

t + i to  t + i  + e 3 n - 3 h ( 3 n -  3). 

Because e3n-3h(3n - 3) is much smaller than F ( 3 n  - 2) we can cover at  least 

1 - 453~-3 of the remainder  of the interval from 0 to e3~h(3n) disjointly with 

pairs of these shorter  intervals. Thus  we get 

_ [X3n-2~2k£ tX3n-2\2k\  8 
?ea,,h(3n)(P,q) < [ - - - ~ J  3 n - 2 + ( 1 - - 1 , - - ~ - ' - - )  ) 3 n - 3 + 4 ( ~ 3 n - 3  

83n. m 

T H E O R E M  3:, V : T × . . .  × T is loosely Bernoulli. 

Proo£" As #(B3~,k) --+ 1 and s3n -~ 0, the theorem follows from the lemma. 
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COROLLARY 1: T × . . .  × Y × . . .  is l o o s e l y  Bernou l l i .  

P r o d :  As the f limits of loosely Bernoulli t ransformations are loosely Bernoulli, 

we have tha t  the infinite direct product  T × . . .  × T × . . .  is loosely Bernoulli. 
| 

5. C o u n t e r e x a m p l e s  are  l o o s e l y  B e r n o u l l i  

If 7r is a pe rmuta t ion  of a countable set V with only cycles of finite length, then 

define 

S~( ' )  ( w l ,  w2, . . . , w~,  . . .) = (TZ(1)w~(1) , Tt(2)w~(2):  . . . T t (n )w~(n ) ,  . . .). 

We will only consider maps with ~ l (v )  ~ 0 for all cycles of 7~. Other  u create 

t ransformat ions  tha t  are not ergodic. This is the class of maps which are used 

in [7] to generate all of the counterexamples. 

The  matching procedure used in this section will be a generalization of the one 

in the previous section. Let V '  be a finite ~ invariant subset of V. Wi thou t  loss 

of generality V'  = ( 1 , . . . ,  k). Given a map of the form U = S~ (v) we can find an 

m such tha t  7rm[v , = id. Wait  until maxvev,  I (v)  < n and cn > m, IV'I. Now we 

go th rough  the f matching as before with the following alterations. 

Define L ,  = (~-]~cy¢l~ containing v l ( t ) )m / ( l eng th  of the cycle) ) and then let 

L = max~ev,  IL.I. Thus  U m l v  , = SiLd ". 

Define our set of good matching,  M a , + l , k ,  so that  ( x l , . . . ,  xk) E Ma,~+l,k if 

xl  E first half of the Bl,an in a 3n + 1 block if L1 > 0, 

xl E second half of the B1,3, in a 3n + 1 block if L1 < 0, 

xk E first half  of the Bk,3n  in a 3n + 1 block if Lk > 0, 

xk C second half  of  the Bk,3n  in a 3n + 1 block if Lk < 0. 

Because for n > L we have tha t  

L(i),  h(3n) + Pl,3n+l, • . . ,  h(3n) + Pc3~+l,3n+l 

are relatively prime for each i, we get tha t  if 

( x l , . . .  xk,), (Yl , . . .  Yk') c M3n+l,k 

then for some 

0 _ i, i '  _< m H (h(3n) + Pj,3n+l), 
j E k '  

i x . i '  U i '  " U i x l , U  2, . . , U i x k  and U Yl ,  Y 2 , . . . , U ~  Yk 
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are all in the first position of an 3n block and zr i -- 7r i' -- id. Now, out of the 

next 
x3n+lg(3n + 1)h(3n)m _ max(i, i ') 

2L 
symbols only the first m(m - 1)(3n + 1) and the last m(m - 1)(3n + 1) are not 

certain to match. Thus 

?F(3n--kl) ( ( X l ' ' ' '  Xk), ( Y l , ' ' '  Yk)) -- < sup(i,F(3ni') ++ 6m2nl) <_ 4Len 

where F(3n ÷ 1) = X3n+lg(3n ÷ 1)h(3n)m/2n. 
Define B3n,k ~--- (Xl,... Xk) E ~k such that  no two xi and xj have 3n blocks 

around 0 that  line up and each point has (-Lea~h(3n), Lea~h(3n)) in an 3n block: 

#3n(B3n,k) > ( 1  - -  2Lk2e3~) = 1 - 53n. 

Let 
S3n : \ T X3n-  2 ~ 2k4ng3n ÷ (1 -- x( X 3n-  2 ~ 2k ) 83n- ' ÷ 4(~3n-3" 

LEMMA 4: For any p, q E B3n,k, -f K(n)(P,q) <-- S3,~. 

Proof: Given p, q E B3n,a, find i, 0 < i < k2h(3n - 1) such that  for at least 

(x3~_2/2) k of the j ,  0 < j <_ K(n),  VJ(p) E M3n-2, and Vi+J(q) C M3~-2. 

Call this set of j ,  J .  For all j E J we can match the p name on the interval 

( j , j  + F(3n))  with the q name on the interval (j + i , j  + i + F(3n))  to within 

4Le3~-2/m in f .  

Now most of the unmatched symbols are in B3,~-3 so we can use our 

previous matching. For 1 - 3 5 3 n - 3  of the unmatched symbols we have that  

both  Ut(p), Ui+t(q) • Ba~-a,k. As t increases, match blocks of length K ( 3 n -  3) 

starting at t and i + t if Ut(p), Ui+t(q) • B3~-3 and no symbol in the block has 

been used in a previous matching. Because e3n-ah(n - 3) is much shorter than 

F(3n - 2) at most 1 - 453n-3 of the interval is not covered by any matching. 

Thus we get 

-f~3,~h(3~)(P,q) < (X3n-2 ~2k4Lc3n_ 2 ÷ ( 1 -  (X3n-2~2k)S3n_ 3 ÷ 453n-3 
2 J - \  2 / 

~_ S3n. 

THEOREM 4: S/(v) iS loosely Bernoulli. 

Proof." As #(B3~,k) --~ 1 and s3~ -~ 0 the theorem follows from the following 

lemma for the case of finite V. The transformations with infinite V are loosely 

Bernoulli because they are the f limit of loosely Bernoulli transformations. | 
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